Classifying mathematical objects T1
Interpreting multiple representations T2
Evaluating mathematical statements T3
Creating problems T4
Analysing reasoning and solutions T5

Learners devise their own problems or problem variants for other learners to solve. This offers them the opportunity to be creative and 'own' problems. While others attempt to solve them, they take on the role of participant and explainer. The 'doing' and 'undoing' processes of mathematics are vividly exemplified.

Learners decide whether given statements are always, sometimes or never true. They are encouraged to develop rigorous mathematical arguments and justifications, and to devise examples and counterexamples to defend their reasoning.

Learners match cards showing different representations of the same mathematical idea. They draw links between different representations and develop new mental images for concepts.

Learners compare different methods for doing a problem, organise solutions and/or diagnose the causes of errors in solutions. They begin to recognise that there are alternative pathways through a problem, and develop their own chains of reasoning.

Learners devise their own classifications for mathematical objects, and apply classifications devised by others. They learn to discriminate carefully and recognise the properties of objects. They also develop mathematical language and definitions.

Doing: the problem poser...	Undoing: the problem solver...		
- creates an equation step-by-step, starting with a value for x and doing the same to both sides'.	- solves the resulting equation.		
- draws a rectangle and calculates its area and perimeter.	- tries to draw a rectangle with the given area and perimeter.		
- writes down an equation of the			
form $y=m x+c$ and plots a			
graph.			- tries to find an equation that fits
:---			
the resulting graph.			

Number operations

than or equal to the number.
The square of a number is greater than or equal to the number.

Directed numbers

If you subtract a positive number from a negative number you get a negative answer.

Perimeter and area

When you cut a piece off a shape, you reduce its area and perimeter.

If you subtract a negative number from a negative number you get a positive answer.

If a square and a rectangle have the same perimeter, the square has the smaller area.

Equations, inequations, identities

Cut up the following cards. Rearrange them to form two proofs.
The first should prove that: If \boldsymbol{n} is an odd number, then n^{2} is an odd number
Odd one out

The second should prove that: If n^{2} is an odd number, then n is an odd number. You may not need to use all the cards.

If \boldsymbol{n} is odd	So \boldsymbol{n} is odd
$n=2 m+1$ for some integer m	$\begin{gathered} =2 k \\ \text { where } k=2 m^{2} \end{gathered}$
$(2 m+1)^{2}=4 m^{2}+4 m+1$	But n^{2} is odd
$(2 m)^{2}=4 m^{2}$	So n^{2} is odd
If \boldsymbol{n} is even	$n=2 m$ for some integer m
So n^{2} is even	$\begin{gathered} =2 k+1 \\ \text { where } k=2 m(m+1) \end{gathered}$
If $\boldsymbol{n}^{\mathbf{2}}$ is odd	$n^{2}=2 m+1$ for some integer m

In the triplets below, how can you justify each of (a), (b), (c) as the odd one out?

(a) a fraction (b) a decimal (c) a percentage	(a) (b) (c)	$\begin{aligned} & \sin 60^{\circ} \\ & \cos 60^{\circ} \\ & \tan 60^{\circ} \end{aligned}$
		$\begin{aligned} & y=x^{2}-6 x+8 \\ & y=x^{2}-6 x+9 \\ & y=x^{2}-6 x+10 \end{aligned}$
(b) (c)	(a) (b) (c)	$\begin{aligned} & 20,14,8,2, \ldots \\ & 3,7,11,15, \ldots \\ & 4,8,16,32, \ldots \end{aligned}$

