Mastery Professional Development

1.11 Addition and subtraction: bridging 10

Teacher guide | Year 2

Teaching point 1:

Addition of three addends can be described by an aggregation story with three parts.

Teaching point 2:

Addition of three addends can be described by an augmentation story with a first..., then..., then..., now...' structure.

Teaching point 3:

The order in which addends (parts) are added or grouped does not change the sum (associative and commutative laws).

Teaching point 4:

When we are adding three numbers, we choose the most efficient order in which to add them, including identifying two addends that make ten (combining).

Teaching point 5:

We can add two numbers which bridge the tens boundary by using a 'make ten' strategy.

Teaching point 6:

We can subtract across the tens boundary by subtracting through ten or subtracting from ten.

Overview of learning

In this segment children will:

- learn about the addition of three or more single-digit numbers in the context of both aggregation and augmentation (see segments 1.5 Additive structures: introduction to aggregation and partitioning and 1.6 Additive structures: introduction to augmentation and reduction)
- understand the importance of the laws of commutativity and associativity in the context of adding three or more numbers
- practise applying written and mental strategies for the addition of three or more addends, using partitioning, commutativity and associativity.
Children should already be familiar with aggregation and augmentation structures for the addition of two numbers. The teaching sequence begins by extending this to the addition of three or more single-digit numbers. Throughout, children should be encouraged to make connections between different representations, including real-world stories, tens frames, part-part-part-whole diagrams, number lines and symbolic notation (e.g. $3+1+4$). The learning sequence begins with three addends which sum to ten or less, before exploring bridging ten.
Once children have developed an understanding of the meaning of addition with more than two addends (parts), they can begin to explore the effect of changing the order of the addends in the sum. This depends on the laws of commutativity and associativity, but children do not need to use these terms at this point. Note that it is much more obvious that we can change the order of the addends in the context of aggregation, than in the context of augmentation.
Children then explore how to make efficient choices when deciding in what order to add the three addends, including identifying when two addends sum to ten. This is then combined with partitioning to give a useful strategy for adding two numbers which bridge the tens boundary; in order for children to use this strategy independently, they will need to be fluent at partitioning numbers up to ten in different ways.
The final teaching point explores two different strategies for subtracting across ten: subtracting through ten and subtracting from ten. These strategies exemplify the idea that whatever part of a set we subtract from, the resulting difference will be the same. Children will discuss which subtraction method is the most efficient according to the particular numbers involved. This important principle can be applied to other calculations children will meet through the rest of the spine.

1.11 Calculation: bridging 10

An explanation of the structure of these materials, with guidance on how teachers can use them, is contained in this NCETM podcast:www.ncetm.org.uk/primarympdpodcast. The main message in the podcast is that the materials are principally for professional development purposes. They demonstrate how understanding of concepts can be built through small coherent steps and the application of mathematical representations. Unlike a textbook scheme they are not designed to be directly lifted and used as teaching materials. The materials can support teachers to develop their subject and pedagogical knowledge and so help to improve mathematics teaching in combination with other high-quality resources, such as textbooks

Teaching point 1:

Addition of three addends can be described by an aggregation story with three parts.
Steps in learning

	Guidance	Representations
1:1	Build on previous work on aggregation (see segment 1.5 Additive structures: introduction to aggregation and partitioning) by extending to include three addends. Initially consider addends that sum to ten or less. Begin using a practical context with an aggregation structure in three parts, for example, three groups of marbles, or rolling three dice. At this stage, for the dice representation, use pictures rather than actually rolling dice to avoid values that sum to greater than ten. Make sure you include examples where one or more of the addends is zero, for example: I have six yellow marbles, no blue marbles and three red marbles. How many marbles do I have altogether?' Use a stem sentence with the structure: 'There are \qquad and \qquad Altogether there are \qquad .$'$	'Madison has two red marbles, Charlie has three blue marbles and Asif has five yellow marbles. They have ten marbles altogether.' Children can use real marbles as manipulatives. 'Tom rolls three dice. He rolls a 2, a 3 and a 4. What is Tom's total roll?'
1:2	Once children are confident with the use of practical and pictorial representations of three-part aggregation, begin to introduce generalised representations, including: - three tens frames and ten counters - the part-part-part-whole model (note that the cherry representation is used throughout this teacher guide, but you could also use the bar model). To help children make a connection between the concrete/practical and	'Madison has two red marbles, Charlie has three blue marbles and Asif has five yellow marbles. They have ten marbles altogether.' Concrete/pictorial:

Teaching point 2: Addition of three addends can be described by an augmentation story with a first..., then..., then..., now...' structure.			
Steps in learning			
	Guidance	Representations	
2:1	Build on previous work on augmentation (see segment 1.6 Additive structures: introduction to augmentation and reduction), again by extending to include three addends that sum to ten or less. Again, you can begin with practical work, with children acting out a range of relevant augmentation stories. Use a stem sentence with the structure: 'First..., then..., then..., now...' You can use a similar approach to segment 1.6 to move from a concrete to a pictorial representation.	Practical: First, four children were sitting on the bus. Then, three more children got on the bus, and then two more children got on. Now, nine children are sitting on the bus.' Chairs could be arranged to support acting out this story. Pictorial:	
2:2	Encourage children to connect practical representations with a generalised structure by recording using tens frames: as the story is told add the counters. Then introduce the further abstraction of the part-part-part-whole model (cherry or bar representation): as before, when using this model, explicitly ask children what each number represents.	Tens frames:	..and then two more children got on. Now, nine children are sitting on the bus.

		Part-part-part-whole representation:
2:3	Now ask the children how augmentation involving three numbers can be written as an equation. Ensure that children are able to link the pictorial to the abstract and say what each number represents. Note that, in an augmentation context, it does not make sense to place the equals symbol at the start of the equation since the resulting expression would no longer represent the first..., then..., then..., now...' structure.	
2:4	It is also important to represent augmentation on a number line clearly demonstrate the two increases in quantity. This representation will prepare children for bridging through ten, covered later in the segment (see Teaching point 5 below).	'A snail is two centimetres up a flower stalk. Then it crawls up four centimetres, and then one centimetre more. How high up the stalk is it now?'
2:5	To promote depth of understanding, present children with a number line depicting two increases, along with a multiple-choice selection of equations; ask children to select the correct equation and justify their choice. To increase the challenge ask children to write the equation from scratch, or provide an equation and ask children to draw the corresponding number line. Throughout this teaching point, apply variation and look at the same context using different representations.	Which equation matches this number line?' $\begin{aligned} & 3+3=6 \\ & 0+3+3=6 \\ & 3+3+6=12 \end{aligned}$

Teaching point 3:

The order in which addends (parts) are added or grouped does not change the sum (associative and commutative laws).

Steps in learning

	Guidance
$3: 1$	Since this is the first time children are formally adding three addends this is the first time they will be exploring the associative law. Discuss equivalent number sentences using concrete materials to represent the addends. Children can explore the conservation of number (i.e. the total remains the same irrespective of which pair of addends are added first). Introduce this generalised statement to capture what children have learnt: 'When we add three numbers, the total will be the same whichever pair we add first.'
$3: 2$	

in the context of an aggregation story:
I have three red cars, one yellow car and four blue cars. How many cars do I have altogether?'
than in the context of an augmentation story:
I had three red cars. On my birthday, my sister gave me one yellow car. The next day my friends gave me four blue cars. How many cars do I have now?'
After exploring commutativity in the context of aggregation, move the focus onto augmentation, using
first..., then..., then..., now...' stories to illustrate commutativity with three addends.
Ensure that you consider both reordering the 'thens' as well as switching one of the 'thens' with the 'first'.

In the representations given here, we first consider a fixed starting number of ducks, with two more groups arriving in a different order. We then change the number of ducks at the start, but retain the same three addends so that the sum also remains the same.
vs.
'At first there were three ducks in the pond, then four ducks arrived, and then two more ducks arrived. Now there are nine ducks in the pond.'

$$
3+2+4=3+4+2
$$

'At first there were three ducks in the pond, then two ducks arrived, and then four more ducks arrived. Now there are nine ducks in the pond.'

vs.
'At first there were two ducks in the pond, then three ducks arrived, and then four more ducks arrived. Now there are nine ducks in the pond.'

$3: 3$	Transfer each pair of duck examples to the part-part-part-whole structure. Compare each pair, asking children: - What's the same?' 'What's different?' Draw attention to the fact that they are the same even though the parts are in a different order. The second duck example (swapping the 'first' with a 'then') is less intuitive; using the part-part-part-whole diagram transforms the problem into an aggregation structure to help children understand what is happening.
$3: 4$	
You can also use a number line to explore commutativity in a situation where it looks less obvious. By the end of these steps children should know the generalised statement: 'If you change the order of the addends, the sum stays the same.'	

Teaching point 4:

When we are adding three numbers, we should choose the most efficient order in which to add them, including identifying two addends that make ten (combining).

Steps in learning

	Note that pictorial representations are used both to model the structure and to provide support for more challenging calculations, for which children have not yet been taught efficient mental strategies.	
4:3	Use the pictorial representations to build towards a stepped symbolic notation, including the correct use of the equals symbol. Children commonly use the equals sign incorrectly when explaining their thinking, for example: $2+3=5+5=10 x$ Remind children that expressions on both sides of the equals sign must be equal, for example: $2+3+5=5+5=10 \checkmark$ Provide children with missing number problems for practice in identifying the most efficient strategies as well as correct symbolic notation.	Different strategies for adding two, four and three: 'Fill in the missing numbers.' $\begin{aligned} & 2+4+3=\square+3=\square \\ & 2+4+3=\square+4=\square \\ & 2+4+3=\square+2=\square \end{aligned}$ Different strategies for adding two, one and four: 'Fill in the missing numbers.' $\begin{aligned} & 2+1+4=\square+\square=\square \\ & 2+1+4=\square+\square=\square \\ & 2+1+4=\square+\square=\square \end{aligned}$
4:4	To promote depth, use a dòng nǎo jīn question such as the one shown here.	Example dòng nǎo jīn question: 'Fill in the missing squares, using the digits $0,1,2,4,5$ and 6 , so that each row and column adds up to the same number.' Solution:

4:5 | Now move on to the first context |
| :--- |
| where children will meet a total |
| greater than ten. Begin with |
| calculations in which two of the |
| addends sum to ten. Since children |
| should now have mastered swapping |
| the order of addends in a calculation, |
| they can use this strategy to efficiently |
| add three numbers by making ten first. |
| From previous work, children should |
| be able to recognise pairs of numbers |
| which sum to ten see segment .7 |
| Addition and subtraction: strategies |
| within 19. They also need to have |
| mastered adding a single-digit number |
| to ten (see segment 1.10 Composition |
| ofnumbers: $11-19$. |
| Begin by representing a problem |
| pictorially, and make a clear link with |
| the tens frame representation to allow |
| are there altogether?' |

4:10	By the end of this teaching point, when you show children expressions (e.g. $7+3+4)$, they should be able to describe their answers in full, in a consistent way (for example, 'seven plus three is equal to ten, then ten plus four is equal to fourteen). This language is important because it prepares children for the next step. Use a stem sentence with the structure: $\frac{\text { plus_plus_is equal to___ is equal to ten, then ten }}{}$

Teaching point 5:

We can add two numbers which bridge the tens boundary by using a 'make ten' strategy.

Steps in learning

	- '...and ten plus two is equal to twelve.' Stay with the same example until the children are confident. The generalised stem sentence has the structure: - 'First I partition the \qquad : \qquad plus \qquad is equal to \qquad 'Then \qquad plus \qquad is equal to ten...' - '...and ten plus \qquad is equal to \qquad .'	
5:3	Provide children with several examples to explore in pairs using the tens frame. Encourage them to repeat the stem sentence as they move the counters around. Ensure that children use the tens frames to expose the mathematical structure and that they do not, for example, use them to 'count all' or 'count on' without making ten.	
5:4	You can also represent this strategy using a number line.	
5:5	Children should build towards using just the symbolic notation. Begin with equations with terms on both sides to practise and embed, before moving to a less scaffolded approach.	'Fill in the missing numbers.' $\begin{aligned} & 7+5=7+3+\square \\ & 8+5=8+2+\square \\ & 6+5=6+\square+\square \\ & 9+5=9+\square+\square \\ & 6+6=6+\square \end{aligned}$

		$\begin{aligned} & 8+8=\square+\square+\square \\ & 8+4=\square+\square+\square \end{aligned}$
5:6	Children will need regular practice at using this strategy in order to develop fluency. It is acceptable for some children to need to use concrete resources for longer than others - in these cases, think carefully about how to move their thinking on, for example by encouraging them to first visualise how to partition the addend and 'make ten'. Children who grasp this strategy quickly will benefit from the opportunity to find the answer in as many ways as possible. They may also enjoy partitioning both addends into $5+$ 'something', for example: $\begin{aligned} & 8+6=(5+3)+(5+1)=14 \\ & 8+6=(5+5)+(3+1)=14 \end{aligned}$	'Can you think of more than one strategy to find the answer to each calculation?'
5:7	To promote depth, use this dòng nǎo jīn question: provide a set of digits with a one-to-one correspondence with a series of expressions with missing numbers, as shown in the example.	'Use the digits 1, 2, 3, 4, 5, 6, 7, 8 and 9 to complete the following expressions. Use each digit exactly once.' $\begin{aligned} & 8+\square>10+5 \\ & \square+7=15 \\ & \square+\square>11 \end{aligned}$ $\begin{aligned} & 10=\square+\square+\square+\square \\ & 6+9=10+\square \end{aligned}$ Solution: $8+\square>10+5$ $8+7=15$

5	

$$
\begin{aligned}
& \boxed{6}+\boxed{7}>11 \\
& 10=\boxed{1}+\boxed{2}+\boxed{3}+\boxed{4} \\
& 6+9=10+\boxed{5}
\end{aligned}
$$

Teaching point 6:

We can subtract across the tens boundary by subtracting throughten or subtracting from ten.

Steps in learning		
	Guidance	Representations
6:1	Revisit the fairground ride scenario from step 5:1, this time beginning with more than ten children, and using a subtraction throughten strategy. To subtract through ten, we subtract down to ten, and then subtract the rest of the subtrahend from ten, for example: $12-4=12-2-2=8$ Either show the reduction context pictorially, as opposite, or act it out with chairs arranged as the carriages. Practise telling the story as a class until children are confident describing it: ' First there were twelve children on the ride. Then four got off. Now there are eight children on the ride.' Now give children an opportunity to work through the story themselves with counters and tens frames. Tell them: - We are going to partition the four into two and two.' - We first subtract two from twelve to get to ten.' 'Then we subtract the remaining two from the ten - we already know that ten minus two is equal to eight.' Have children describe the process in sentences: 'First we took away two counters to make ten. Then we took away another two counters to make eight.' Model the process on a bead bar and number line, continuing to describe in full sentences. The bead bar helps to	Subtraction throughten - pictorial: 'First there were twe/ve children on the ride. Then four got off. Now there are eight children on the ride.' Then Now Subtraction throughten - bead bar and number line:

	make the link between the tens frame representation and the number line. Finally write equations to express the two-stage process, showing the children how to jot down partitioning of the subtrahend and express the two steps. Some children may write: $12-2=10-2=8 x$ Make sure that you pick up this error, and show that $10-2=8$ must be written as a separate equation to avoid differing values on either side of the equals symbol.	Subtraction through ten - abstract: $12-/_{2}^{4} \backslash_{2}$ $\begin{aligned} & \quad \begin{aligned} 12-2 & =10 \\ 10-2 & =8 \end{aligned} \\ & \text { so } \quad \begin{array}{l} 12-4=8 \end{array} \\ & \hline \end{aligned}$
6:2	Now tell the story with the same numbers, but explaining that a different four children get off of the ride - i.e. now using a subtraction from ten strategy. To subtract from ten, we subtract the subtrahend from ten, and then add on the difference between the minuend and ten, for example: $\begin{aligned} & 12-4=(10+2)-4 \\ & =(10-4)+2=8 \end{aligned}$ Emphasise that we still have four children getting off, as before, but it is a different four. Follow a similar teaching pattern to that used in step 6:7: Tell the story while acting out or showing the pictures. Use tens frames and counters to model the story - 'First we take away four counters from the ten which means we have six left in the first tens frame. Then we add on the other two; six plus two is equal to eight.' Show the partitioning of the minuend, and equations, to represent the calculation. Note the omission of the bead bar and number line, since these	Subtraction from ten - pictorial: 'First there were twelve children on the ride. Then four got off. Now there are eight children on the ride.' Then Now Subtraction from ten - abstract: $\begin{aligned} & 10-4=6 \\ & 6+2=8 \end{aligned}$ so $12-4=8$

	Continue until the children are confident describing and using both methods, when working with counters, and choosing between the methods. Subtracting throughten may be easier when the subtrahend is smaller (e.g. $12-3$) and subtracting from ten possibly lends itself to larger subtrahends (e.g. 17 - 9). However, there isn't always a 'best' choice, and decisions about approach should always be made according to the particular minuend and subtrahend, and the relationship between them. For both strategies, fluency in number facts for the numbers to 10 (for example, being able to partition four into two and two, and knowing that $10-2=8$) is important for success.		
6:6	Because subtractions that bridge ten require several steps (with either strategy), at this stage in Year 2 children are likely to need lots of practice in order to become fluent. You will need to carefully support children in progressing to the completion of these calculations without using counters and without counting back in ones to get an answer. Initially, move away from using physical counters by presenting children with images of tens frames to work with alongside expressions which already show either the subtrahend or minuend partitioned. Then move slowly to just giving the children the equation to solve - first remove the scaffold of the pictorial tens frames, then remove the scaffold of the 'pre-partitioned' subtrahend/minuend.	Scaffolded subtraction throughten:	

		Scaffolded subtraction from ten:	
		$\begin{aligned} & \quad \begin{array}{l} 10-8=2 \\ 2+4=6 \end{array} \\ & \text { so } \\ & 14-8=6 \end{aligned}$	
6:7	Once children are confident with the two methods, provide practice including: equations with missing differences contextual questions, for example: - 'There are eleven apples in a bowl. We eat seven. How many are left?' (reduction) - I have fourteen paintbrushes to wash. I have washed eight already. How many more do I have to wash?' (partitioning) To promote and assess depth of understanding, present dòng nǎo jīn questions such as those shown opposite.	Missing difference equatio 'Fill in the missing numbers. $11-3=$ \square $14-6=$ \square $12-9=$ \square $16-7=$ \square Dòng nǎo jīn problems: What is the smallest num expression is true?' $13-$ \square <7 'Fill in the missing numb $13-3-4=10-$ \square 12-2- \square $=12-7$ $16=3+$ \square $+6$	ber for which this

1.11 Calculation: bridging 10

