Key Stage 3 mathematics: mastery professional development materials - overall structure and mapping to the national curriculum

Teaching for mastery is teaching that aims for deep and sustainable learning; learning that is rooted in an appreciation of the connectedness of mathematical ideas and based on an understanding of the underlying structures. It emphasises the need to go beyond being able to memorise facts and practise procedures and routines.

Such teaching requires us to 'look through' the national curriculum statements of content and descriptions of what students need to be able to do. We must discern what students need to be aware of and understand in order to do these things fluently. These materials therefore offer a more 'fine grained' description of the key themes and big ideas of the curriculum by detailing:

- six broad mathematical themes
- a number of core concepts within each theme
- a set of 'knowledge, skill and understanding' statements within each core concept
- a collection of focused key ideas within each statement of knowledge, skill and understanding.

The diagram on page 2 and Table 1 on pages 3-13 detail the complete Key Stage 3 curriculum structure that forms the foundation for the NCETM secondary mastery professional development materials.

Please note: Numbering of themes, core concepts, ‘knowledge, skills and understanding’ statements, and key ideas is for ease of reference only. Whilst the numbering represents one possible teaching order, it is not intended to be prescriptive. Each guidance document details the prior learning required so that the sequencing can be adapted to fit your own scheme.

Table 2 on pages 14-20 indicates where the national curriculum Key Stage 3 mathematics programme of study statements are covered, followed by related endnotes.

NATIONAL CENTREfor EXCELLENCE in the TEACHING of MATHEMATICS

Table 1: NCETM secondary mastery professional development materials: Key Stage 3 curriculum structure

Core concepts		'Knowledge, skills and understanding' statements		Key ideas(* $=$ key ideas exemplified in guidance documents)	
1.1	Place value, estimation and rounding	1.1.1	Understand the value of digits in decimals, measure and integers	1.1.1.1	Understand place value in integers
				1.1.1.2*	Understand place value in decimals, including recognising exponent and fractional representations of the column headings
				1.1.1.3	Understand place value in the context of measure
				1.1.1.4	Order and compare numbers and measures using <, >, =
		1.1.2	Round numbers to a required number of decimal places	1.1.2.1	Round numbers to up to three decimal places
				1.1.2.2	Round numbers to any number of decimal places
		1.1.3	Round numbers to a required number of significant figures	1.1.3.1	Understand the concept of significant figures
				1.1.3.2*	Round integers to a required number of significant figures
				1.1.3.3	Round decimals to a required number of significant figures
		1.1.4	Estimate calculations by rounding	1.1.4.1	Understand what is meant by a sensible degree of accuracy
				1.1.4.2*	Estimate numerical calculations
				1.1.4.3	Estimate and check if solutions to problems are of the correct magnitude
				1.1.4.4	Determine whether calculations using rounding will give an underestimate or overestimate
				1.1.4.5	Understand the impact of rounding errors when using a calculator, and the way that these can be compounded to result in large inaccuracies
				1.1.4.6	Calculate possible errors expressed using inequality notation $\mathrm{a}<\mathrm{x} \leq \mathrm{b}$
1.2	Properties of number	1.2.1	Understand multiples	1.2.1.1	Understand what a multiple is and be able to list multiples of n
				1.2.1.2*	Identify and explain whether a number is or is not a multiple of a given integer
		1.2.2	Understand integer exponents and roots	1.2.2.1	Understand the concept of square and cube
				1.2.2.2	Understand the concept of square root and cube root
				1.2.2.3	Understand and use correct notation for positive integer exponents
				1.2.2.4	Understand how to use the keys for squares and other powers and square root on a calculator

			1.3.3	Interpret and compare numbers in standard form $A \times 10^{n}$,$1 \leq A<10$	1.3.3.1*	Be able to write any integer in a range of forms, e.g. $53=5.3 \times 10,530 \times \frac{1}{10}, 5300 \times 0.01$, etc.	
			1.3.3.2		Understand that very large numbers can be written in the form $a \times 10^{n}$, (where $1<a \leq 10$) and appreciate the real-life contexts where this format is usefully used		
			1.3.3.3		Understand that very small numbers can be written in the form $a \times 10^{-n}$, (where $1<a \leq 10$) and appreciate the real-life contexts where this format is usefully used		
$\begin{aligned} & - \\ & \stackrel{y}{0} \\ & \stackrel{1}{\ddagger} \end{aligned}$	1.4	Simplifying and manipulating expressions, equations and formulae		1.4.1	Understand and use the conventions and vocabulary of algebra including forming and interpreting algebraic expressions and equations	1.4.1.1	Understand that a letter can be used to represent a generalised number
						1.4.1.2	Understand that algebraic notation follows particular conventions and that following these aids clear communication
			1.4.1.3			Know the meaning of and identify: term, coefficient, factor, product, expression, formula and equation	
			1.4.1.4*			Understand and recognise that a letter can be used to represent a specific unknown value or a variable	
			1.4.1.5*			Understand that relationships can be generalised using algebraic statements	
			1.4.1.6			Understand that substituting particular values into a generalised algebraic statement gives a sense of how the value of the expression changes	
			1.4.2	Simplify algebraic	1.4.2.1	Identify like terms in an expression, generalising an understanding of unitising	
				collecting like terms to maintain equivalence	1.4.2.2	Simplify expressions by collecting like terms	
			1.4.3	Manipulate algebraic expressions using the	1.4.3.1*	Understand how to use the distributive law to multiply an expression by a term such as 3(a+4b) and $3 p^{2}(2 p+3 b)$	
				maintain equivalence	1.4.3.2	Understand how to use the distributive law to factorise expressions where there is a common factor, such as $3 a+12 b$ and $6 p^{3}+9 p^{2} b$	
					1.4.3.3	Apply understanding of the distributive law to a range of problem-solving situations and contexts (including collecting like terms, multiplying an expression by a single term and factorising), e.g. $10-2(3 a+5), 3(a \pm 2 b) \pm 4(2 a b \pm 6 b)$, etc.	
			1.4.4	Find products of	1.4.4.1*	Use the distributive law to find the product of two binomials	
					1.4.4.2	Understand and use the special case when the product of two binomials is the difference of two squares	
					1.4.4.3	Find more complex binomial products	

			2.1.5	Use the laws and conventions of arithmetic to calculate efficiently	2.1.5.1	Know the commutative law and use it to calculate efficiently	
			2.1.5.2		Know the associative law and use it to calculate efficiently		
			2.1.5.3		Know the distributive law and use it to calculate efficiently		
			2.1.5.4		Calculate using priority of operations, including brackets, powers, exponents and reciprocals		
			2.1.5.5*		Use the associative, distributive and commutative laws to flexibly and efficiently solve problems		
			2.1.5.6		Know how to fluently use certain calculator functions and use a calculator appropriately		
	2.2	Solving linear equations		2.2.1	Understand what is meant by finding a solution to a linear equation with one unknown	2.2.1.1	Recognise that there are many different types of equations of which linear is one type
						2.2.1.2	Understand that in an equation the two sides of the 'equals' sign balance
						2.2.1.3*	Understand that a solution is a value that makes the two sides of an equation balance
						2.2.1.4	Understand that a family of linear equations can all have the same solution
				2.2.2	Solve a linear equation with a single unknown on one side where obtaining the solution requires one step	2.2.2.1	Solve a linear equation requiring a single additive step
			2.2.2.2			Solve a linear equation requiring a single multiplicative step	
			2.2.3	Solve a linear equation with a single unknown where obtaining the solution requires two or more steps (no brackets)	2.2.3.1	Understand that an equation needs to be in a format to be 'ready' to be solved, through collecting like terms on each side of the equation	
					2.2.3.2	Know that when an additive step and a multiplicative step are required, the order of operations will not affect the solution	
					2.2.3.3*	Recognise that equations with unknowns on both sides of the equation can be manipulated so that the unknowns are on one side	
					2.2.3.4	Solve complex linear equations, including those involving reciprocals	
			2.2.4	Solve efficiently a linear equation with a single unknown involving brackets	2.2.4.1	Appreciate the significance of the bracket in an equation	
					2.2.4.2	Recognise that there is more than one way to remove a bracket when solving an equation	
					2.2.4.3	Solve equations involving brackets where simplification is necessary first	

3.1 Understanding multiplicative relationships

3.1.1	Understand the concept of multiplicative relationships	3.1.1.1*	Appreciate that any two numbers can be connected via a multiplicative relationship
		3.1.1.2	Understand that a multiplicative relationship can be expressed as a ratio and as a fraction
		3.1.1.3	Be able to calculate the multiplier for any given two numbers
		3.1.1.4	Appreciate that there are an infinite number of pairs of numbers for any given multiplicative relationship (equivalence)
3.1.2	Understand that multiplicative relationships can be represented in a number of ways and connect and move between those different representations	3.1.2.1*	Use a double number line to represent a multiplicative relationship and connect to other known representations
		3.1.2.2*	Understand the language and notation of ratio and use a ratio table to represent a multiplicative relationship and connect to other known representations
		3.1.2.3	Use a graph to represent a multiplicative relationship and connect to other known representations
		3.1.2.4	Use a scaling diagram to represent a multiplicative relationship and connect to other known representations
3.1.3	Understand that fractions are an example of a multiplicative relationship and apply this understanding to a range of contexts	3.1.3.1	Find a fraction of a given amount
		3.1.3.2	Given a fraction and the result, find the original amount
		3.1.3.3	Express one number as a fraction of another
3.1.4	Understand that ratios are an example of a multiplicative relationship and apply this understanding to a range of contexts	3.1.4.1	Be able to divide a quantity into a given ratio
		3.1.4.2	Be able to determine the whole, given one part and the ratio
		3.1.4.3*	Be able to determine one part, given the other part and the ratio
		3.1.4.4	Use ratio to describe rates (e.g. exchange rates, conversions, cogs, etc.)
3.1.5	Understand that percentages are an example of a multiplicative relationship and apply this understanding to a range of contexts	3.1.5.1	Describe one number as a percentage of another
		3.1.5.2	Find a percentage of a quantity using a multiplier
		3.1.5.3*	Calculate percentage changes (increases and decreases)
		3.1.5.4	Calculate the original value, given the final value after a stated percentage increase or decrease
		3.1.5.5	Find the percentage increase or decrease, given start and finish quantities

	3.2	Trigonometry	3.1.6	Understand proportionality	3.1.6.1	Understand the connection between multiplicative relationships and direct proportion
					3.1.6.2	Recognise direct proportion and use in a range of contexts including compound measures
					3.1.6.3	Recognise and use inverse proportionality in a range of contexts
			3.2.1	Understand the trigonometric functions	3.2.1.1*	Understand that the trigonometric functions are derived from measurements within a unit circle
					3.2.1.2	Recognise the right-angled triangle within a unit circle and use proportion to scale to similar triangles
					3.2.1.3*	Know how the sine, cosine and tangent ratios are derived from the sides of a right-angled triangle
			3.2.2	Use trigonometry to solve problems in a range of contexts	3.2.2.1	Choose appropriate trigonometric relationships to use to solve problems in right-angled triangles
					3.2.2.2	Use trigonometric ratios to find a missing side in a right-angled triangle
					3.2.2.3	Use trigonometric ratios to find a missing angle in a right-angled triangle
$\begin{aligned} & \stackrel{~}{0} \\ & \stackrel{0}{E} \\ & \stackrel{\rightharpoonup}{F} \end{aligned}$	4.1	Sequences	4.1.1	Understand the features of a sequence	4.1.1.1*	Appreciate that a sequence is a succession of terms formed according to a rule
					4.1.1.2	Understand that a sequence can be generated and described using term-to-term approaches
					4.1.1.3	Understand that a sequence can be generated and described by a position-to-term rule
			4.1.2	Recognise and describe arithmetic sequences	4.1.2.1	Understand the features of an arithmetic sequence and be able to recognise one
					4.1.2.2*	Understand that any term in an arithmetic sequence can be expressed in terms of its position in the sequence (nth term)
					4.1.2.3	Understand that the nth term allows for the calculation of any term
					4.1.2.4	Determine whether a number is a term of a given arithmetic sequence
			4.1.3	Recognise and describe other types of sequences (nonarithmetic)	4.1.3.1	Understand the features of a geometric sequence and be able to recognise one
					4.1.3.2	Understand the features of special number sequences, such as square, triangle and cube, and be able to recognise one
					4.1.3.3	Appreciate that there are other number sequences
	4.2	Graphical representations	4.2.1	Connect coordinates, equations and graphs	4.2.1.1	Describe and plot coordinates, including non-integer values, in all four quadrants
					4.2.1.2	Solve a range of problems involving coordinates
					4.2.1.3*	Know that a set of coordinates, constructed according to a mathematical rule, can be represented algebraically and graphically

					4.2.1.4	Understand that a graphical representation shows all of the points (within a range) that satisfy a relationship
			4.2.2	Explore linear relationships	4.2.2.1	Recognise that linear relationships have particular algebraic and graphical features as a result of the constant rate of change
					4.2.2.2	Understand that there are two key elements to any linear relationship: rate of change and intercept point
					4.2.2.3*	That writing linear equations in the form $y=m x+c$ helps to reveal the structure
					4.2.2.4	Solve a range of problems involving graphical and algebraic aspects of linear relationships
			4.2.3	Model and interpret a range of situations graphically	4.2.3.1	Understand that different types of equation give rise to different graph shapes, identifying quadratics in particular
					4.2.3.2	Read and interpret points from a graph to solve problems
					4.2.3.3*	Model real-life situations graphically
					4.2.3.4*	Recognise that the point of intersection of two linear graphs satisfies both relationships and hence represents the solution to both those equations
®$\stackrel{0}{\text { ¢ }}$¢¢	5.1	Statistical representations and measures	5.1.1	Understand and calculate accurately measures of central tendency and spread	5.1.1.1*	Understand what the mean is measuring, how it is measuring it and calculate the mean from data presented in a range of different ways
					5.1.1.2	Understand what the median is measuring, how it is measuring it and find the median from data presented in a range of different ways
					5.1.1.3*	Understand what the mode is measuring, how it is measuring it and identify the mode from data presented in a range of different ways
					5.1.1.4	Understand what the range is measuring, how it is measuring it and calculate the range from data presented in a range of different ways
			5.1.2	Construct accurately	5.1.2.1	Construct bar charts from data presented in a number of different ways
				representations	5.1.2.2*	Construct pie charts from data presented in a number of different ways
					5.1.2.3	Construct pictograms from data presented in a number of different ways
					5.1.2.4	Construct scatter graphs from data presented in a number of different ways

| Geometrical
 properties | 6.1.1Understand and use
 angle properties | 6.1.1.1* | Understand that a pair of parallel lines traversed by a straight line produces sets of equal and
 supplementary angles |
| :--- | :--- | :--- | :--- | :--- |

Table 2: Coverage of the national curriculum Key Stage 3 mathematics programme of study

		KS3 programme of study Pupils should be taught to:	1. The structure of the number system	2. Operating on number	3. Multiplicative reasoning	4. Sequences and graphs	5. Statistics and probability	6. Geometry
$\begin{aligned} & \bar{\phi} \\ & \stackrel{0}{\xi} \\ & \frac{1}{2} \end{aligned}$	N1	understand and use place value for decimals, measures and integers of any size	1.1.1					
	N2	order positive and negative integers, decimals and fractions; use the number line as a model for ordering of the real numbers; use the symbols $=, \neq$, $<,>, \leq, \geq$	$\begin{aligned} & 1.1 .1 \\ & 1.3 .2 \end{aligned}$					
	N3	use the concepts and vocabulary of prime numbers, factors (or divisors), multiples, common factors, common multiples, highest common factor, lowest common multiple, prime factorisation, including using product notation and the unique factorisation property	$\begin{aligned} & \text { 1.2.1 } \\ & \text { 1.2.3 } \end{aligned}$					
	N4	use the four operations, including formal written methods, applied to integers, decimals, proper and improper fractions, and mixed numbers, all both positive and negative		2.1.1-2.1.4				
	N5	use conventional notation for the priority of operations, including brackets, powers, roots and reciprocals		2.1.5				
	N6	recognise and use relationships between operations including inverse operations		$\begin{aligned} & \text { 2.1.1 } \\ & \text { 2.1.2 } \end{aligned}$				
	N7	use integer powers and associated real roots (square, cube and higher), recognise powers of 2, 3, 4,5 and distinguish between exact representations of roots and their decimal approximations	1.2.2					
	N8	interpret and compare numbers in standard form $\mathrm{A} \times 10^{\mathrm{n}} 1 \leq \mathrm{A}<10$, where n is a positive or negative integer or zero	1.3.3					

	G11	understand and use the relationship between parallel lines and alternate and corresponding angles						6.1.1
	G12	derive and use the sum of angles in a triangle and use it to deduce the angle sum in any polygon, and to derive properties of regular polygons						6.1.1
	G13	apply angle facts, triangle congruence, similarity and properties of quadrilaterals to derive results about angles and sides, including Pythagoras' theorem, and use known results to obtain simple proofs						6.1.1-6.1.3
	G14	use Pythagoras' theorem and trigonometric ratios in similar triangles to solve problems involving rightangled triangles						$\begin{aligned} & 3.2 .1 \\ & 3.2 .2 \\ & \text { 6.1.3 } \end{aligned}$
	G15	[use the properties of faces, surfaces, edges and vertices of cubes, cuboids, prisms, cylinders, pyramids, cones and spheres to solve problems in 3D] ${ }^{\text {xi }}$						
	G16	interpret mathematical relationships both algebraically and geometrically.						6.2
근은은	P1	record, describe and analyse the frequency of outcomes of simple probability experiments involving randomness, fairness, equally and unequally likely outcomes, using appropriate language and the 0-1 probability scale					5.3.1	
	P2	understand that the probabilities of all possible outcomes sum to 1					5.3.3	
	P3	enumerate sets and unions/intersections of sets systematically, using tables, grids and Venn diagrams					5.3.2	
	P4	generate theoretical sample spaces for single and combined events with equally likely, mutually exclusive outcomes and use these to calculate theoretical probabilities.					5.3.3	

	S1	describe, interpret and compare observed distributions of a single variable through: appropriate graphical representation involving discrete, continuous and grouped data; and appropriate measures of central tendency (mean, mode, median) and spread (range, consideration of outliers)					$\begin{gathered} \text { 5.1.1, 5.2.1 } \\ \text { and 5.2.2 } \end{gathered}$	
年	S2	construct and interpret appropriate tables, charts, and diagrams, including frequency tables, bar charts, pie charts, and pictograms for categorical data, and vertical line (or bar) charts for ungrouped and grouped numerical data					5.1.2	
	s3	describe simple mathematical relationships between two variables (bivariate data) in observational and experimental contexts and illustrate using scatter graphs.					5.2.1	

	Notes	Relevant sections of the professional development materials
N12	i Students will have met standard units of mass, length, time, money and other measures, including decimal quantities, at Key Stage 2. As such, we have not focused on these as a stand-alone key idea at Key Stage 3; rather, measures may be used as a context throughout students' learning.	1.1 Place value, estimation and rounding 6.2 Perimeter, area and volume
N15	ii The national curriculum states that teachers should use their judgement about when ICT tools should be used. We have therefore not explicitly covered ICT in the key ideas, as use of ICT is best determined by teachers based on the needs of their students and the available resources.	Use of dynamic software: 3.2 Trigonometry Use of statistical software: 5 Statistics and probability
A5	iii Students will have been introduced to the idea of a mathematical formula at Key Stage 2. As such, we have not focused on these as a separate key idea at Key Stage 3; rather, use of formulae may be used as a context for work on algebra including changing the subject of a formula throughout this Key Stage.	1.4.1.3 Know the meaning of and identify: term, coefficient, factor, product, expression, formula and equation 5.1 Statistical representations and measures 5.2 Statistical analysis 6.2 Perimeter, area and volume
R1	iv Students will have converted between related standard units of mass, length, time, money and other measures, including decimal quantities, at Key Stage 2. For example, between litres and millilitres and hours and minutes. They will also have converted between related metric and imperial measures using approximate equivalents. As such, we have not focused on these as a stand-alone key idea at Key Stage 3; rather, conversion may be used as a context throughout students' learning.	1.4.1.3 Know the meaning of and identify: term, coefficient, factor, product, expression, formula and equation 6.2 Perimeter, area and volume
R7	v Understanding that the same relationship between two entities can be expressed in different ways is an important aspect of mathematics. Once the basics of a concept are grasped, its relationship to other representations and forms helps to deepen understanding and can improve efficiency when calculating. In this case: - when working with ratios, students should explore the connections with fractions - when exploring linear functions and the features of straight line graphs, links to ratio should be made.	3.1.4 Understand that ratios are an example of a multiplicative relationship and apply this understanding to a range of contexts 4.2.2.2 Understand that there are two key elements to any linear relationship: rate of change and intercept point 4.2.3.3 M odel real-life situations graphically
R8	vi Rather than this being a specific key idea in these materials, we have endeavoured to use money and finance as a context for studying percentage increase.	3.1.5 Understand that percentages are an example of a multiplicative relationship and apply this understanding to a range of contexts

G3	vii Students will have constructed and measured line segments and angles at Key Stages 1 and 2, including within the contexts of 2-D shape. As such, we have not focused on these as a stand-alone key idea at Key Stage 3; rather, students should be given opportunity to construct and measure in a wide range of contexts, including geometric and statistical.	4.2 Graphical representations 5.1 Statistical representations and measures 6 Geometry (especially 6.4 Constructions)
G5	viii Students will have described, sketched and constructed using conventional terms and notations: points, lines, parallel lines, perpendicular lines, right angles, regular polygons, and other polygons that are reflectively symmetrical at Key Stage 2. Note that rotational symmetry is a new idea at Key Stage 3. As such, we have not focused on these as a separate key idea at Key Stage 3; rather, students should continue to use and apply these ideas in a range of contexts as they continue to study geometry.	3.2 Trigonometry 6 Geometry (especially 6.4 Constructions)
G6	ix Students will have used the standard conventions for labelling the sides and angles of triangle $A B C$ at Key Stage 2, including from 2-D representations. As such, we have not focused on these as a separate key idea at Key Stage 3; rather, students should continue to use and apply these ideas in a range of contexts as they continue to study geometry.	3.2 Trigonometry 6 Geometry
G7	\times Students will have worked with the properties of 2-D shapes at Key Stages 1 and 2. As such, we have not focused on these as a stand-alone key idea at Key Stage 3; rather, students should be given opportunity to use and apply these existing knowledge and skills as they continue to study geometry.	3.2 Trigonometry 6 Geometry
G10	xi Students will have applied the properties of angles at a point, angles at a point on a straight line and vertically opposite angles at Key Stage 2. As such, we have not focused on these as a stand-alone key idea at Key Stage 3; rather, students should be given opportunity to use and apply these knowledge and skills as they continue to study geometry.	6.1 Geometrical properties
G15	xii Students will have used the properties of faces, surfaces, edges and vertices of cubes, cuboids, prisms, cylinders, pyramids, cones and spheres to solve problems in 3-D at Key Stage 2, including from 2-D representations. As such, we have not focused on these as a separate key idea at Key Stage 3; rather, students should be given opportunity to use and apply these knowledge and skills as they continue to study geometry.	3.2 Trigonometry 6 Geometry

