

KS3 Progression Map: Ratio, proportion and rates of change

This progression map expands upon the statements of subject content in the DfE document <u>Mathematics programmes of study:</u> <u>Key Stage 3</u> published September 2013. Suggested allocation of material to Years 7, 8 and 9 is given as starting points for writing schemes of work, but the implicit chronology is not intended to be prescriptive or restrictive; indeed, the programme of study is explicit that "Decisions about progression should be based on the security of pupils' understanding and their readiness to progress to the next stage. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content in preparation for key stage 4. Those who are not sufficiently fluent should consolidate their understanding, including through additional practice, before moving on". The NCETM fully endorses these principles, and will be developing further this progression map to help teachers achieve them.

Furthermore, although the map is organised by content, this is only for ease of reference and use. In the classroom, links between topics on the map, and between different maps, should be looked for and explored at every opportunity, so that "by the end of Key Stage 3, pupils ... know, apply and understand the matters, skills and processes specified". Throughout Y7-9 pupils should have regular and opportunity and developmental feedback that helps them to **develop fluency**, to

- consolidate their numerical and mathematical capability from Key Stage 2 and extend their understanding of the number system and place value to include decimals, fractions, powers and roots
- select and use appropriate calculation strategies to solve increasingly complex problems
- move freely between different numerical, algebraic, graphical and diagrammatic representations [for example, equivalent fractions, fractions and decimals, and equations and graphs]

 use language and properties precisely to analyse numbers, algebraic expressions, 2-D and 3-D shapes, probability and statistics;

to reason mathematically, to

- extend their understanding of the number system; make connections between number relationships, and their algebraic and graphical representations
- extend and formalise their knowledge of ratio and proportion in working with measures and geometry, and in formulating proportional relations algebraically
- make and test conjectures about patterns and relationships; look for proofs or counter-examples
- begin to reason deductively in geometry, number and algebra, including using geometrical constructions
- interpret when the structure of a numerical problem requires additive, multiplicative or proportional reasoning
- explore what can and cannot be inferred in statistical and probabilistic settings, and begin to express their arguments formally;

and to **solve problems**, to

- develop their mathematical knowledge, in part through solving problems and evaluating the outcomes, including multi-step problems
- develop their use of formal mathematical knowledge to interpret and solve problems, including in financial mathematics
- begin to model situations mathematically and express the results using a range of formal mathematical representations
- select appropriate concepts, methods and techniques to apply to unfamiliar and non-routine problems.

The NCETM will be developing further resources to support the development and embedding of these skills.

Year 7	Year 8	Year 9	
Multiplicative relationships			
change freely between related standard units, for	change freely between related standard units, for	change freely between related standard units, for	
example:	example speed (m per sec to km per hour and	example acceleration	
time (4 hours = 4×360 seconds),	vice-versa)		
length (7 mm = 7×0.1 cm),			
area (9 m ² = 9 × 10000 cm ²),			
volume/capacity (3 mm ³ = 3 x 0.001 cm ³),			
mass (5 kg = 5 × 1000 g)			
express one quantity as a whole-number multiple	express one quantity as a fraction of another,	given the expression of quantity A as a non-unit	
of another, and by reversing the expression of the	where the fraction is less than 1 and where it is	fraction of quantity B know immediately how to	
same relationship express one quantity as a unit	greater than 1	express quantity B as a fraction of quantity A	
fraction of another			
Ratio notation and number multipliers			
understand that a multiplicative relationship	understand that a multiplicative relationship	understand that a multiplicative relationship	
between two quantities that can be expressed as	between two quantities can be expressed as a	between two quantities can be expressed as a	
a ratio of the form 1 : n where n is an integer can	ratio or a fraction	ratio, fraction or decimal	
also be expressed as the unit fraction $^{1}/_{n}$			
use ratio notation, including reduction to simplest	use ratio notation, including deriving the fraction	use ratio notation to express relationships	
form	A / (A + B) from the ratio A : B in appropriate	between side-lengths of right-angled triangles	
	contexts		
use scale factors of scale diagrams and maps in	use scale factors when constructing similar	use scale factors when solving problems	
everyday contexts	shapes by enlargement	involving similar shapes	
relate the language of ratios and the associated	relate the language of ratios and the associated	relate the language of ratios and the associated	
calculations to the arithmetic of fractions	calculations to gradients	calculations to linear functions	
relate dividing a given quantity into two parts in a	divide a given quantity into two parts in a given	distinguish between contexts involving	

given part:whole ratio to finding a fraction of a	part:part or part:whole ratio; express the division	comparisons expressed using a : b notation in	
quantity; relate part:part ratios of quantities to the	of a quantity into two parts as a ratio	which the idea of 'part' is a helpful model and	
corresponding part:whole ratios		contexts in which the idea of 'part' is not a helpful	
		model	
Percentage change			
	solve problems involving percentage change,	solve problems involving simple interest in	
	including: percentage increase, decrease and	financial mathematics	
	original value problems		
Direct and inverse proportion			
	solve problems involving direct proportion,	solve problems involving direct and inverse	
	including graphical and algebraic representations	proportion, including graphical and algebraic	
		representations	
Compound units			
use the idea of compound units (A 'per' B), as in	use familiar compound units, such as speed, to	use compound units, such as density, to solve	
unit pricing, to solve problems	solve problems	problems	