

KS3 Progression Map: Algebra

This progression map expands upon the statements of subject content in the DfE document <u>Mathematics programmes of study</u>: <u>Key Stage 3</u> published September 2013. Suggested allocation of material to Years 7, 8 and 9 is given as starting points for writing schemes of work, but the implicit chronology is not intended to be prescriptive or restrictive; indeed, the programme of study is explicit that "Decisions about progression should be based on the security of pupils' understanding and their readiness to progress to the next stage. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content in preparation for key stage 4. Those who are not sufficiently fluent should consolidate their understanding, including through additional practice, before moving on". The NCETM fully endorses these principles, and will be developing further this progression map to help teachers achieve them.

Furthermore, although the map is organised by content, this is only for ease of reference and use. In the classroom, links between topics on the map, and between different maps, should be looked for and explored at every opportunity, so that "by the end of Key Stage 3, pupils ... know, apply and understand the matters, skills and processes specified". Throughout Y7-9 pupils should have regular and opportunity and developmental feedback that helps them to **develop fluency**, to

- consolidate their numerical and mathematical capability from Key Stage 2 and extend their understanding of the number system and place value to include decimals, fractions, powers and roots
- select and use appropriate calculation strategies to solve increasingly complex problems
- move freely between different numerical, algebraic, graphical and diagrammatic representations [for example, equivalent fractions, fractions and decimals, and equations and graphs]

 use language and properties precisely to analyse numbers, algebraic expressions, 2-D and 3-D shapes, probability and statistics;

to reason mathematically, to

- extend their understanding of the number system; make connections between number relationships, and their algebraic and graphical representations
- extend and formalise their knowledge of ratio and proportion in working with measures and geometry, and in formulating proportional relations algebraically
- make and test conjectures about patterns and relationships; look for proofs or counter-examples
- begin to reason deductively in geometry, number and algebra, including using geometrical constructions
- interpret when the structure of a numerical problem requires additive, multiplicative or proportional reasoning
- explore what can and cannot be inferred in statistical and probabilistic settings, and begin to express their arguments formally;

and to **solve problems**, to

- develop their mathematical knowledge, in part through solving problems and evaluating the outcomes, including multi-step problems
- develop their use of formal mathematical knowledge to interpret and solve problems, including in financial mathematics
- begin to model situations mathematically and express the results using a range of formal mathematical representations
- select appropriate concepts, methods and techniques to apply to unfamiliar and non-routine problems.

The NCETM will be developing further resources to support the development and embedding of these skills.

Year 7	Year 8	Year 9
	Notation and vocabulary	
use and interpret algebraic notation, including:		use and interpret algebraic notation, including
ab in place of $a \times b$ 3y in place of $y + y + y$ and $3 \times y$		coefficients written as fractions rather than as
a^{2} in place of $a \times a$, a^{3} in place of $a \times a \times a$; $a^{2}b$ in place of $a \times a \times b$		decimals
a'_{b} in place of $a \div b$ brackets		
substitute positive integer values into formulae	substitute integer values into formulae and	substitute numerical values into formulae and
and expressions, including scientific formulae	expressions, including scientific formulae	expressions, including scientific formulae
understand the correct and incorrect use of '=';	understand and use the concepts and vocabulary	understand and use the concepts and vocabulary
understand and use the concepts and vocabulary	of expressions, equations, inequalities, terms,	of expressions, equations, inequalities, terms,
of expressions, equations, inequalities, terms and	factors and correlation / covariation	factors, correlation / covariation and parameters
factors		
	Manipulation	
simplify and manipulate algebraic expressions to	simplify and manipulate algebraic expressions to	think about relational meanings before acting on
maintain equivalence by:	maintain equivalence by:	expressions, such as recognise situations in
- collecting like terms	- taking out common factors	which different ways of seeing the situation lead
- multiplying a single term over a bracket	- expanding products of two or more	to equivalent expressions, and use manipulation
	binomials	and simplification to show that the expressions
		are equivalent (e.g. sequences of "dot patterns")
understand and use standard mathematical	rearrange formulae to change the subject	recognise situations in which it is helpful to
formulae		rearrange formulae to change the subject, and
		explain why it is helpful
use algebraic methods to solve linear equations	use algebraic methods to solve linear equations	use algebraic methods to solve linear equations

in one variable	in one variable (including all forms that require	in one variable (including all forms that require		
	rearrangement)	rearrangement) that express facts observed in		
		situations, and interpret the solution		
Expressing and exploring relations: functions and graphs				
work with coordinates in all four quadrants	understand how the position of a point changes if	know the relationship between the coordinates of		
	one or both of its coordinates are multiplied by ⁻¹	two points when each point is the reflection of the		
		other in the y-axis, the x-axis, the line $y = x$ or the		
		line $y = x$		
model simple situations or procedures involving	model situations or procedures by translating	relate changes in situations or procedures to		
two variables by translating them into linear	them into algebraic expressions or formulae and	changes in algebraic expressions, formulae or		
algebraic expressions or formulae and by using	by using graphs	graphs		
graphs				
produce graphs of linear functions of one variable	recognise, sketch and produce graphs of linear	recognise, sketch and produce graphs of linear		
with appropriate scaling, using equations in x and	functions of one variable with appropriate scaling,	and quadratic functions of one variable with		
y and the Cartesian plane	using equations in <i>x</i> and <i>y</i> and the Cartesian	appropriate scaling, using equations in <i>x</i> and <i>y</i>		
	plane	and the Cartesian plane		
interpret simple linear mathematical relationships,	interpret linear mathematical relationships, such	interpret linear and quadratic mathematical		
such as y equals 5 times x or p is 3 more than	as A plus 7 is 6 less than half of B or three-	relationships, such as (P subtract 1) halved is 6		
twice q, both algebraically and graphically	quarters of x is 3 times one more than half y, both	times Q plus 10 or A equals the positive-square-		
	algebraically and graphically	root of (B plus 1), both algebraically and		
		graphically		
	reduce a given linear equation in two variables to	reduce a linear equation that expresses a		
	the standard form $y = mx + c$; calculate and	relationship between two variables in a situation		
	interpret gradients and intercepts of graphs of	to the standard form $y = mx + c$; calculate and		
	such linear equations numerically, graphically	interpret gradients and intercepts of graphs of		

	and algebraically	such linear equations numerically, graphically,		
		algebraically and in the situation		
use linear graphs to estimate values of y for given	use linear and quadratic graphs to estimate	use linear and quadratic graphs to estimate		
values of <i>x</i> and vice versa	values of y for given values of x and vice versa	values of <i>y</i> for given values of <i>x</i> and vice versa		
	and to find approximate solutions of simultaneous	and to find approximate solutions of simultaneous		
	linear equations when at least one equation is of	linear equations		
	the form $y = k$ or $x = k$			
from given linear graphs find approximate	from given linear graphs find approximate	find approximate solutions to contextual problems		
answers to simple contextual questions	solutions to contextual problems	from given graphs of a variety of functions,		
		including piece-wise linear, exponential and		
		reciprocal graphs		
Sequences				
generate terms of a sequence with a simple	generate terms of a sequence with a linear	generate terms of a sequence from either a term-		
linear position-to-term rule (such as 'an	position-to-term rule from either the term-to-term	to-term or a position-to-term rule		
expression for the value of the n th term is n + 2')	or the position-to-term rule; begin to generate			
from either the term-to-term or the position-to-	terms of a sequence from a quadratic position-to-			
term rule	term rule			
	recognise arithmetic sequences and find an	recognise geometric sequences and appreciate		
	expression for the value of the <i>n</i> th term	other sequences that arise		